DeepMind 给 AI 做了个 IQ 测试,结果看来 A

2020-06-06 作者: 围观:270 58 评论

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

生活在一个 AI「泛滥」的时代,我们几乎每天都能看到 AI 研究上的最新进展。昨天,AI 打 DoTA 战胜人类了;今天,AI 能自己找路了;明天,AI 能假冒人类打电话了。在担心 AI 会灭掉人类的人们眼中,AI 正像一只怪物一样野蛮生长,像一只侵略军一样从远方大跨步逼近。 

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

然而实际上,你所看到的这些进展,只是不同的 AI 在特定方向的进步。虽然当前基于深度学习的 AI 热潮已经有五六年了,还是没有一个独立的 AI,像一个独立的人一样,能够优秀地执行多种任务。

人们在形容 AI 时,通常会用这样一种说法:这个 AI 的智商,跟三岁小孩差不多。 智商(Intelligence quotient)简称 IQ,是评价人类智商一个普遍接受的标準 。你有智商,我也有智商,就连三岁小孩也有智商。接下来问题来了:既然说 AI 跟三岁小孩差不多,那幺它的智商到底有多少呢

得给 AI 测测智商了。

AI 推理能力很强没错,但还是不敌人类用生活打炼出的「抽象理解能力」

自 AlphaGo 横空出世以来,AI 在解决一些複杂的、策略性的问题上,能力已经得到了证明。但如果想要更像「人」,AI 必须也拥有像人类一样的抽象理解能力。

现在的 AI 计算能力不用说了,推理能力也很强,所以只剩抽象理解能力了。Google 旗下的 AI 科研机构 DeepMind 认为,「基于神经网络的机器学习模型取得了惊人的成绩,但想要衡量其推理抽象概念的能力,却非常困难。」  

为了搞清楚现在的 AI 在抽象理解能力上究竟实力如何,DeepMind 还真给 AI 设计了一套测试题:

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

这套测试题,借鑒了人类的 IQ 测试里着名的瑞文推理测验:给定一组图片,找到符合其「演进」规律的图片。

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

在这种测试中,题目里并不会告诉你要找到符合什幺标準的图形,而是需要我们根据日常生活中学习或掌握到的一些基本原则,来理解和分析测试中出现的简单图案。

要找到正确的答案,往往要借鑒我们从生活中明白的「演进」规律。比如小树苗长成大树,比如从 0 到 1、2、3、4、5 的加法,再比如加减乘除。以上这些,就是我们生活中所提炼出的抽象的「演进」(progression)的意义,就是人类的抽象理解能力。

「但是,我们现在还没有找到办法,能让 AI 也可以从『日常经验』中学到类似的能力。」DeepMind 在论文中说。

「不过,我们依然可以很好地利用人类的这种视觉抽象逻辑测试,来设计一个实验。在这个测试中,我们并不是像人类测试那样,考察从日常生活到视觉推理问题的知识转移。而是研究 AI 在将知识从一组受控的视觉推理问题,转移到另一组问题的能力。」 

简单翻译一下这段话就是:DeepMind 先给 AI 餵一组由三角形构成的图像的视觉推理题库,等训练的差不多了,再出一组由方块构成的视觉推理题,让 AI 去回答,看它是能随机应变举一反三,还是学会了三角,换成方块就不灵了。

DeepMind 测试结果:AI 的智商实在不怎幺样,题目变个样就头晕眼花

对于担心 AI 取代人类的朋友来说,DeepMind 的一部分实验结果确实是个好消息:一些最棒的 AI 模型,在这个 IQ 测试中的表现得并不怎样。

正如预期的那样,当训练集和测试集所採用的抽象元素相同时,多个 AI 模型都表现出超过 75% 的準确率。 

然而,当测试集和训练集出现变化,甚至有时候只是把黑点换成较暗的浅色圆点,AI 的表现就会像无头苍蝇一样,失去了准星。 

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

上面这些都是深度神经网络领域的当红炸子鸡,测起智商来却没那幺灵光了。

ResNet  (Deep Residual Network),即深度残差网络在其中一组测试中仅仅得到 22.4% 的低分。 要知道,它的提出曾被形容为 CNN(卷积神经网络)的一个里程碑式事件,它在网络深度上比其他模型提升了 n 个量级,更重要的是它的残差学习方式,改良了模型的架构,因此一出现就秒杀众前辈。 

测试中表现最好的 WReN 模型,则是 DeepMind 在关係网络(Relation Networks)模型基础上改良的版本。它增加了对不同图像组合之间关係的分析,并可以对这类 IQ 测试的各种可能性结果进行评估。

不过,DeepMind 针对这个测试的逻辑,对一些模型进行改良,改良后的模型表现出明显的提升。

比如,在一些模型中,DeepMind 加入了元标记(meta-targets)的辅助训练方法,让模型对数据集背后体现出的形状、属性(形状的数量、大小、颜色深浅等)以及关係(同时出现、递减、递增等等)进行预测,当这部分预测準确时,最终回答的準确率就明显出现提升,预测错误时,回答準确率明显下降。一些极端情况下,模型回答的準确率更是从预测错误时的 32% 提升至了 87%。 

DeepMind 给 AI 做了个 IQ 测试,结果看来 A

未来的 AI 需要能够像人一样,在「多领域」表现出众

DeepMind 表示,他们设计的这个实验,最终目的并不是为了让 AI 能够通过这种 IQ 测试。他们关注的是 AI 泛化能力的问题。

泛化是指模型很好地拟合以前未见过的新数据的能力,这是机器学习界的术语,你也可以粗暴的理解成一个 AI 模型能否在各类场景中「通吃」。AI 的泛化能力越强,离啥都能干的所谓「通用人工智能」就越近。

DeepMind 在博客最后这样说道:

研究表明,寻找关于泛化问题的普遍结论可能没有任何意义。我们测试的神经网络在某些泛化方案中表现优秀,但是其他方案下却很糟糕。

诸如所使用模型的架构、模型是否被训练从而能解释答案背后的逻辑等一系列因素,都会对泛化效果带来影响。而在大多数情况下,当需要处理过往经验从未涉及的、或完全陌生的情景时,这些 AI 的表现很糟糕。

至少现在看来,AI 还有很长的路要走啊。

延伸阅读

世界首位 AI 公民苏菲亚与 PTT 之父杜奕深度对谈:「AI 无法取代所有『人性』」
趋势科技锻鍊菁英工程师妙招:办一场只由「AI」参加的德州扑克赛
2018 世足赛最大输家:高盛, 赔上名声害惨无数赌徒的 AI 冥灯